ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10045
16
1

VQ-CNMP: Neuro-Symbolic Skill Learning for Bi-Level Planning

13 October 2024
Hakan Aktas
Emre Ugur
ArXivPDFHTML
Abstract

This paper proposes a novel neural network model capable of discovering high-level skill representations from unlabeled demonstration data. We also propose a bi-level planning pipeline that utilizes our model using a gradient-based planning approach. While extracting high-level representations, our model also preserves the low-level information, which can be used for low-level action planning. In the experiments, we tested the skill discovery performance of our model under different conditions, tested whether Multi-Modal LLMs can be utilized to label the learned high-level skill representations, and finally tested the high-level and low-level planning performance of our pipeline.

View on arXiv
Comments on this paper