ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10160
26
1

Will the Inclusion of Generated Data Amplify Bias Across Generations in Future Image Classification Models?

14 October 2024
Zeliang Zhang
Xin Liang
Mingqian Feng
Susan Liang
Chenliang Xu
ArXivPDFHTML
Abstract

As the demand for high-quality training data escalates, researchers have increasingly turned to generative models to create synthetic data, addressing data scarcity and enabling continuous model improvement. However, reliance on self-generated data introduces a critical question: Will this practice amplify bias in future models? While most research has focused on overall performance, the impact on model bias, particularly subgroup bias, remains underexplored. In this work, we investigate the effects of the generated data on image classification tasks, with a specific focus on bias. We develop a practical simulation environment that integrates a self-consuming loop, where the generative model and classification model are trained synergistically. Hundreds of experiments are conducted on Colorized MNIST, CIFAR-20/100, and Hard ImageNet datasets to reveal changes in fairness metrics across generations. In addition, we provide a conjecture to explain the bias dynamics when training models on continuously augmented datasets across generations. Our findings contribute to the ongoing debate on the implications of synthetic data for fairness in real-world applications.

View on arXiv
Comments on this paper