ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10433
24
0

LKASeg:Remote-Sensing Image Semantic Segmentation with Large Kernel Attention and Full-Scale Skip Connections

14 October 2024
Xuezhi Xiang
Yibo Ning
Lei Zhang
Denis Ombati
Himaloy Himu
Xiantong Zhen
ArXivPDFHTML
Abstract

Semantic segmentation of remote sensing images is a fundamental task in geospatial research. However, widely used Convolutional Neural Networks (CNNs) and Transformers have notable drawbacks: CNNs may be limited by insufficient remote sensing modeling capability, while Transformers face challenges due to computational complexity. In this paper, we propose a remote-sensing image semantic segmentation network named LKASeg, which combines Large Kernel Attention(LSKA) and Full-Scale Skip Connections(FSC). Specifically, we propose a decoder based on Large Kernel Attention (LKA), which extract global features while avoiding the computational overhead of self-attention and providing channel adaptability. To achieve full-scale feature learning and fusion, we apply Full-Scale Skip Connections (FSC) between the encoder and decoder. We conducted experiments by combining the LKA-based decoder with FSC. On the ISPRS Vaihingen dataset, the mF1 and mIoU scores achieved 90.33% and 82.77%.

View on arXiv
Comments on this paper