Paragon: Parameter Generation for Controllable Multi-Task Recommendation

Commercial recommender systems face the challenge that task requirements from platforms or users often change dynamically (e.g., varying preferences for accuracy or diversity). Ideally, the model should be re-trained after resetting a new objective function, adapting to these changes in task requirements. However, in practice, the high computational costs associated with retraining make this process impractical for models already deployed to online environments. This raises a new challenging problem: how to efficiently adapt the learned model to different task requirements by controlling the model parameters after deployment, without the need for retraining. To address this issue, we propose a novel controllable learning approach via \textbf{para}meter \textbf{g}eneration for c\textbf{on}trollable multi-task recommendation (\textbf{Paragon}), which allows the customization and adaptation of recommendation model parameters to new task requirements without retraining. Specifically, we first obtain the optimized model parameters through adapter tunning based on the feasible task requirements. Then, we utilize the generative model as a parameter generator, employing classifier-free guidance in conditional training to learn the distribution of optimized model parameters under various task requirements. Finally, the parameter generator is applied to effectively generate model parameters in a test-time adaptation manner given task requirements. Moreover, Paragon seamlessly integrates with various existing recommendation models to enhance their controllability. Extensive experiments on two public datasets and one commercial dataset demonstrate that Paragon can efficiently generate model parameters instead of retraining, reducing computational time by at least 94.6\%. The code is released at \href{this https URL}{this https URL}.
View on arXiv