ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.11648
19
4

Efficient, Accurate and Stable Gradients for Neural ODEs

15 October 2024
Sam McCallum
James Foster
ArXivPDFHTML
Abstract

Training Neural ODEs requires backpropagating through an ODE solve. The state-of-the-art backpropagation method is recursive checkpointing that balances recomputation with memory cost. Here, we introduce a class of algebraically reversible ODE solvers that significantly improve upon both the time and memory cost of recursive checkpointing. The reversible solvers presented calculate exact gradients, are high-order and numerically stable -- strictly improving on previous reversible architectures.

View on arXiv
Comments on this paper