ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.11655
14
0

Retrieval Augmented Spelling Correction for E-Commerce Applications

15 October 2024
Xuan Guo
Rohit Patki
Dante Everaert
Christopher Potts
ArXivPDFHTML
Abstract

The rapid introduction of new brand names into everyday language poses a unique challenge for e-commerce spelling correction services, which must distinguish genuine misspellings from novel brand names that use unconventional spelling. We seek to address this challenge via Retrieval Augmented Generation (RAG). On this approach, product names are retrieved from a catalog and incorporated into the context used by a large language model (LLM) that has been fine-tuned to do contextual spelling correction. Through quantitative evaluation and qualitative error analyses, we find improvements in spelling correction utilizing the RAG framework beyond a stand-alone LLM. We also demonstrate the value of additional finetuning of the LLM to incorporate retrieved context.

View on arXiv
Comments on this paper