ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.11783
21
0

LatentBKI: Open-Dictionary Continuous Mapping in Visual-Language Latent Spaces with Quantifiable Uncertainty

15 October 2024
Joey Wilson
Ruihan Xu
Yile Sun
Parker Ewen
Minghan Zhu
Kira Barton
Maani Ghaffari
ArXivPDFHTML
Abstract

This paper introduces a novel probabilistic mapping algorithm, LatentBKI, which enables open-vocabulary mapping with quantifiable uncertainty. Traditionally, semantic mapping algorithms focus on a fixed set of semantic categories which limits their applicability for complex robotic tasks. Vision-Language (VL) models have recently emerged as a technique to jointly model language and visual features in a latent space, enabling semantic recognition beyond a predefined, fixed set of semantic classes. LatentBKI recurrently incorporates neural embeddings from VL models into a voxel map with quantifiable uncertainty, leveraging the spatial correlations of nearby observations through Bayesian Kernel Inference (BKI). LatentBKI is evaluated against similar explicit semantic mapping and VL mapping frameworks on the popular Matterport3D and Semantic KITTI datasets, demonstrating that LatentBKI maintains the probabilistic benefits of continuous mapping with the additional benefit of open-dictionary queries. Real-world experiments demonstrate applicability to challenging indoor environments.

View on arXiv
Comments on this paper