ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.13605
19
0

Transformer-Based Approaches for Sensor-Based Human Activity Recognition: Opportunities and Challenges

17 October 2024
Clayton Frederick Souza Leite
Henry Mauranen
Aziza Zhanabatyrova
Yu Xiao
ArXivPDFHTML
Abstract

Transformers have excelled in natural language processing and computer vision, paving their way to sensor-based Human Activity Recognition (HAR). Previous studies show that transformers outperform their counterparts exclusively when they harness abundant data or employ compute-intensive optimization algorithms. However, neither of these scenarios is viable in sensor-based HAR due to the scarcity of data in this field and the frequent need to perform training and inference on resource-constrained devices. Our extensive investigation into various implementations of transformer-based versus non-transformer-based HAR using wearable sensors, encompassing more than 500 experiments, corroborates these concerns. We observe that transformer-based solutions pose higher computational demands, consistently yield inferior performance, and experience significant performance degradation when quantized to accommodate resource-constrained devices. Additionally, transformers demonstrate lower robustness to adversarial attacks, posing a potential threat to user trust in HAR.

View on arXiv
Comments on this paper