ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.13947
11
0

MACK: Mismodeling Addressed with Contrastive Knowledge

17 October 2024
Liam Rankin Sheldon
D. Rankin
Philip C. Harris
ArXivPDFHTML
Abstract

The use of machine learning methods in high energy physics typically relies on large volumes of precise simulation for training. As machine learning models become more complex they can become increasingly sensitive to differences between this simulation and the real data collected by experiments. We present a generic methodology based on contrastive learning which is able to greatly mitigate this negative effect. Crucially, the method does not require prior knowledge of the specifics of the mismodeling. While we demonstrate the efficacy of this technique using the task of jet-tagging at the Large Hadron Collider, it is applicable to a wide array of different tasks both in and out of the field of high energy physics.

View on arXiv
Comments on this paper