ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.14868
531
15
v1v2v3v4 (latest)

Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation

IEEE International Conference on Robotics and Automation (ICRA), 2024
18 October 2024
Sung-Wook Lee
Yen-Ling Kuo
ArXiv (abs)PDFHTML
Main:6 Pages
6 Figures
Bibliography:2 Pages
5 Tables
Abstract

Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 37%, the task completion rate by 14%, and reduces the wall-clock time by up to 540%. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings.

View on arXiv
Comments on this paper