ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.15042
21
0

Adversarial Training: A Survey

19 October 2024
Mengnan Zhao
Lihe Zhang
Jingwen Ye
Huchuan Lu
Baocai Yin
Xinchao Wang
    AAML
ArXivPDFHTML
Abstract

Adversarial training (AT) refers to integrating adversarial examples -- inputs altered with imperceptible perturbations that can significantly impact model predictions -- into the training process. Recent studies have demonstrated the effectiveness of AT in improving the robustness of deep neural networks against diverse adversarial attacks. However, a comprehensive overview of these developments is still missing. This survey addresses this gap by reviewing a broad range of recent and representative studies. Specifically, we first describe the implementation procedures and practical applications of AT, followed by a comprehensive review of AT techniques from three perspectives: data enhancement, network design, and training configurations. Lastly, we discuss common challenges in AT and propose several promising directions for future research.

View on arXiv
Comments on this paper