Modern scientific discovery increasingly relies on high-performance computing for complex modeling and simulation. A key challenge in improving parallel program performance is efficiently mapping tasks to processors and data to memory, a process dictated by intricate, low-level system code known as mappers. Developing high-performance mappers demands days of manual tuning, posing a significant barrier for domain scientists without systems expertise. We introduce a framework that automates mapper development with generative optimization, leveraging richer feedback beyond scalar performance metrics. Our approach features the Agent-System Interface, which includes a Domain-Specific Language (DSL) to abstract away low-level complexity of system code and define a structured search space, as well as AutoGuide, a mechanism that interprets raw execution output into actionable feedback. Unlike traditional reinforcement learning methods such as OpenTuner, which rely solely on scalar feedback, our method finds superior mappers in far fewer iterations. With just 10 iterations, it outperforms OpenTuner even after 1000 iterations, achieving 3.8X faster performance. Our approach finds mappers that surpass expert-written mappers by up to 1.34X speedup across nine benchmarks while reducing tuning time from days to minutes.
View on arXiv