ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.15827
15
0

Explainability of Highly Associated Fuzzy Churn Patterns in Binary Classification

21 October 2024
Danny Y. C. Wang
Lars Arne Jordanger
Jerry Chun-Wei Lin
ArXivPDFHTML
Abstract

Customer churn, particularly in the telecommunications sector, influences both costs and profits. As the explainability of models becomes increasingly important, this study emphasizes not only the explainability of customer churn through machine learning models, but also the importance of identifying multivariate patterns and setting soft bounds for intuitive interpretation. The main objective is to use a machine learning model and fuzzy-set theory with top-\textit{k} HUIM to identify highly associated patterns of customer churn with intuitive identification, referred to as Highly Associated Fuzzy Churn Patterns (HAFCP). Moreover, this method aids in uncovering association rules among multiple features across low, medium, and high distributions. Such discoveries are instrumental in enhancing the explainability of findings. Experiments show that when the top-5 HAFCPs are included in five datasets, a mixture of performance results is observed, with some showing notable improvements. It becomes clear that high importance features enhance explanatory power through their distribution and patterns associated with other features. As a result, the study introduces an innovative approach that improves the explainability and effectiveness of customer churn prediction models.

View on arXiv
Comments on this paper