ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.16330
25
0

End-to-End Transformer-based Automatic Speech Recognition for Northern Kurdish: A Pioneering Approach

19 October 2024
Abdulhady Abas Abdullah
Shima Tabibian
H. Veisi
Aso Mahmudi
Tarik A. Rashid
ArXivPDFHTML
Abstract

Automatic Speech Recognition (ASR) for low-resource languages remains a challenging task due to limited training data. This paper introduces a comprehensive study exploring the effectiveness of Whisper, a pre-trained ASR model, for Northern Kurdish (Kurmanji) an under-resourced language spoken in the Middle East. We investigate three fine-tuning strategies: vanilla, specific parameters, and additional modules. Using a Northern Kurdish fine-tuning speech corpus containing approximately 68 hours of validated transcribed data, our experiments demonstrate that the additional module fine-tuning strategy significantly improves ASR accuracy on a specialized test set, achieving a Word Error Rate (WER) of 10.5% and Character Error Rate (CER) of 5.7% with Whisper version 3. These results underscore the potential of sophisticated transformer models for low-resource ASR and emphasize the importance of tailored fine-tuning techniques for optimal performance.

View on arXiv
Comments on this paper