ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.17064
25
0

Multi Kernel Estimation based Object Segmentation

22 October 2024
Haim Goldfisher
Asaf Yekutiel
ArXivPDFHTML
Abstract

This paper presents a novel approach for multi-kernel estimation by enhancing the KernelGAN algorithm, which traditionally estimates a single kernel for the entire image. We introduce Multi-KernelGAN, which extends KernelGAN's capabilities by estimating two distinct kernels based on object segmentation masks. Our approach is validated through three distinct methods: texture-based patch Fast Fourier Transform (FFT) calculation, detail-based segmentation, and deep learning-based object segmentation using YOLOv8 and the Segment Anything Model (SAM). Among these methods, the combination of YOLO and SAM yields the best results for kernel estimation. Experimental results demonstrate that our multi-kernel estimation technique outperforms conventional single-kernel methods in super-resolution tasks.

View on arXiv
Comments on this paper