ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.19346
13
8

AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios

25 October 2024
Xinyi Mou
Jingcong Liang
Jiayu Lin
X. Zhang
Xiawei Liu
Shiyue Yang
Rong Ye
Lei Chen
Haoyu Kuang
Xuanjing Huang
Zhongyu Wei
ArXivPDFHTML
Abstract

Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at \url{https://github.com/ljcleo/agent_sense}.

View on arXiv
Comments on this paper