ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.19761
28
0

Physical Simulation for Multi-agent Multi-machine Tending

11 October 2024
Abdalwhab Abdalwhab
Giovanni Beltrame
David St-Onge
    OffRL
    AI4CE
ArXivPDFHTML
Abstract

The manufacturing sector was recently affected by workforce shortages, a problem that automation and robotics can heavily minimize. Simultaneously, reinforcement learning (RL) offers a promising solution where robots can learn through interaction with the environment. In this work, we leveraged a simplistic robotic system to work with RL with "real" data without having to deploy large expensive robots in a manufacturing setting. A real-world tabletop arena was designed with robots that mimic the agents' behavior in the simulation. Despite the difference in dynamics and machine size, the robots were able to depict the same behavior as in the simulation. In addition, those experiments provided an initial understanding of the real deployment challenges.

View on arXiv
Comments on this paper