21
3

FLAASH: Flow-Attention Adaptive Semantic Hierarchical Fusion for Multi-Modal Tobacco Content Analysis

Abstract

The proliferation of tobacco-related content on social media platforms poses significant challenges for public health monitoring and intervention. This paper introduces a novel multi-modal deep learning framework named Flow-Attention Adaptive Semantic Hierarchical Fusion (FLAASH) designed to analyze tobacco-related video content comprehensively. FLAASH addresses the complexities of integrating visual and textual information in short-form videos by leveraging a hierarchical fusion mechanism inspired by flow network theory. Our approach incorporates three key innovations, including a flow-attention mechanism that captures nuanced interactions between visual and textual modalities, an adaptive weighting scheme that balances the contribution of different hierarchical levels, and a gating mechanism that selectively emphasizes relevant features. This multi-faceted approach enables FLAASH to effectively process and analyze diverse tobacco-related content, from product showcases to usage scenarios. We evaluate FLAASH on the Multimodal Tobacco Content Analysis Dataset (MTCAD), a large-scale collection of tobacco-related videos from popular social media platforms. Our results demonstrate significant improvements over existing methods, outperforming state-of-the-art approaches in classification accuracy, F1 score, and temporal consistency. The proposed method also shows strong generalization capabilities when tested on standard video question-answering datasets, surpassing current models. This work contributes to the intersection of public health and artificial intelligence, offering an effective tool for analyzing tobacco promotion in digital media.

View on arXiv
Comments on this paper