ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20054
30
0

Evaluating Neural Networks for Early Maritime Threat Detection

26 October 2024
Dhanush Tella
Chandra Teja Tiriveedhi
Naphtali Rishe
Dan E. Tamir
Jonathan I. Tamir
    AAML
ArXivPDFHTML
Abstract

We consider the task of classifying trajectories of boat activities as a proxy for assessing maritime threats. Previous approaches have considered entropy-based metrics for clustering boat activity into three broad categories: random walk, following, and chasing. Here, we comprehensively assess the accuracy of neural network-based approaches as alternatives to entropy-based clustering. We train four neural network models and compare them to shallow learning using synthetic data. We also investigate the accuracy of models as time steps increase and with and without rotated data. To improve test-time robustness, we normalize trajectories and perform rotation-based data augmentation. Our results show that deep networks can achieve a test-set accuracy of up to 100% on a full trajectory, with graceful degradation as the number of time steps decreases, outperforming entropy-based clustering.

View on arXiv
Comments on this paper