ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20055
24
0

3D Distance-color-coded Assessment of PCI Stent Apposition via Deep-learning-based Three-dimensional Multi-object Segmentation

26 October 2024
Xiaoyang Qin
Hao Huang
Shuaichen Lin
Xinhao Zeng
Kaizhi Cao
Renxiong Wu
Yuming Huang
J. Yang
Yong Liu
Gang Li
Guangming Ni
ArXivPDFHTML
Abstract

Coronary artery disease poses a significant global health challenge, often necessitating percutaneous coronary intervention (PCI) with stent implantation. Assessing stent apposition holds pivotal importance in averting and identifying PCI complications that lead to in-stent restenosis. Here we proposed a novel three-dimensional (3D) distance-color-coded assessment (DccA)for PCI stent apposition via deep-learning-based 3D multi-object segmentation in intravascular optical coherence tomography (IV-OCT). Our proposed 3D DccA accurately segments 3D vessel lumens and stents in IV-OCT images, using a spatial matching network and dual-layer training with style transfer. It quantifies and maps stent-lumen distances into a 3D color space, facilitating 3D visual assessment of PCI stent apposition. Achieving over 95% segmentation precision, our proposed DccA enhances clinical evaluation of PCI stent deployment and supports personalized treatment planning.

View on arXiv
Comments on this paper