ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20558
16
0

Neural rendering enables dynamic tomography

27 October 2024
I. Grega
William F. Whitney
Vikram S. Deshpande
ArXivPDFHTML
Abstract

Interrupted X-ray computed tomography (X-CT) has been the common way to observe the deformation of materials during an experiment. While this approach is effective for quasi-static experiments, it has never been possible to reconstruct a full 3d tomography during a dynamic experiment which cannot be interrupted. In this work, we propose that neural rendering tools can be used to drive the paradigm shift to enable 3d reconstruction during dynamic events. First, we derive theoretical results to support the selection of projections angles. Via a combination of synthetic and experimental data, we demonstrate that neural radiance fields can reconstruct data modalities of interest more efficiently than conventional reconstruction methods. Finally, we develop a spatio-temporal model with spline-based deformation field and demonstrate that such model can reconstruct the spatio-temporal deformation of lattice samples in real-world experiments.

View on arXiv
Comments on this paper