ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20715
16
1

Wearable-Based Real-time Freezing of Gait Detection in Parkinson's Disease Using Self-Supervised Learning

8 October 2024
Shovito Barua Soumma
Kartik Mangipudi
Daniel Peterson
Shyamal Mehta
Hassan Ghasemzadeh
ArXivPDFHTML
Abstract

LIFT-PD is an innovative self-supervised learning framework developed for real-time detection of Freezing of Gait (FoG) in Parkinson's Disease (PD) patients, using a single triaxial accelerometer. It minimizes the reliance on large labeled datasets by applying a Differential Hopping Windowing Technique (DHWT) to address imbalanced data during training. Additionally, an Opportunistic Inference Module is used to reduce energy consumption by activating the model only during active movement periods. Extensive testing on publicly available datasets showed that LIFT-PD improved precision by 7.25% and accuracy by 4.4% compared to supervised models, while using 40% fewer labeled samples and reducing inference time by 67%. These findings make LIFT-PD a highly practical and energy-efficient solution for continuous, in-home monitoring of PD patients.

View on arXiv
Comments on this paper