ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20913
24
0

Constrained Optimal Fuel Consumption of HEV:Considering the Observational Perturbation

28 October 2024
Shuchang Yan
Haoran Sun
ArXivPDFHTML
Abstract

We assume accurate observation of battery state of charge (SOC) and precise speed curves when addressing the constrained optimal fuel consumption (COFC) problem via constrained reinforcement learning (CRL). However, in practice, SOC measurements are often distorted by noise or confidentiality protocols, and actual reference speeds may deviate from expectations. We aim to minimize fuel consumption while maintaining SOC balance under observational perturbations in SOC and speed. This work first worldwide uses seven training approaches to solve the COFC problem under five types of perturbations, including one based on a uniform distribution, one designed to maximize rewards, one aimed at maximizing costs, and one along with its improved version that seeks to decrease reward on Toyota Hybrid Systems (THS) under New European Driving Cycle (NEDC) condition. The result verifies that the six can successfully solve the COFC problem under observational perturbations, and we further compare the robustness and safety of these training approaches and analyze their impact on optimal fuel consumption.

View on arXiv
Comments on this paper