ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.21004
23
0

Push-Forward Signed Distance Functions enable interpretable and robust continuous shape quantification

28 October 2024
Roua Rouatbi
Juan Esteban Suarez
Ivo F. Sbalzarini
ArXivPDFHTML
Abstract

We introduce the Push-Forward Signed Distance Morphometric (PF-SDM), a novel method for shape quantification in biomedical imaging that is continuous, interpretable, and invariant to shape-preserving transformations. PF-SDM effectively captures the geometric properties of shapes, including their topological skeletons and radial symmetries. This results in a robust and interpretable shape descriptor that generalizes to capture temporal shape dynamics. Importantly, PF-SDM avoids certain issues of previous geometric morphometrics, like Elliptical Fourier Analysis and Generalized Procrustes Analysis, such as coefficient correlations and landmark choices. We present the PF-SDM theory, provide a practically computable algorithm, and benchmark it on synthetic data.

View on arXiv
Comments on this paper