ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.21647
22
2

Can Language Models Replace Programmers? REPOCOD Says Ñot Yet'

29 October 2024
Shanchao Liang
Yiran Hu
Nan Jiang
Lin Tan
    ALM
    ELM
ArXivPDFHTML
Abstract

Large language models (LLMs) have achieved high accuracy, i.e., more than 90% pass@1, in solving Python coding problems in HumanEval and MBPP. Thus, a natural question is, whether LLMs achieve comparable code completion performance compared to human developers? Unfortunately, one cannot answer this question using existing manual crafted or simple (e.g., single-line) code generation benchmarks, since such tasks fail to represent real-world software development tasks. In addition, existing benchmarks often use poor code correctness metrics, providing misleading conclusions. To address these challenges, we create REPOCOD, a code generation benchmark with 980 problems collected from 11 popular real-world projects, with more than 58% of them requiring file-level or repository-level context information. In addition, REPOCOD has the longest average canonical solution length (331.6 tokens) and the highest average cyclomatic complexity (9.00) compared to existing benchmarks. Each task in REPOCOD includes 313.5 developer-written test cases on average for better correctness evaluation. In our evaluations of ten LLMs, none of the models achieve more than 30% pass@1 on REPOCOD, indicating the necessity of building stronger LLMs that can help developers in real-world software development. REPOCOD is available at https://github.com/lt-asset/REPOCOD

View on arXiv
Comments on this paper