ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.22492
25
0

RealCQA-V2 : Visual Premise Proving A Manual COT Dataset for Charts

29 October 2024
Saleem Ahmed
Ranga Setlur
Venu Govindaraju
    ReLM
    LRM
ArXivPDFHTML
Abstract

We introduce Visual Premise Proving (VPP), a novel task tailored to refine the process of chart question answering by deconstructing it into a series of logical premises. Each of these premises represents an essential step in comprehending a chart's content and deriving logical conclusions, thereby providing a granular look at a model's reasoning abilities. This approach represents a departure from conventional accuracy-based evaluation methods, emphasizing the model's ability to sequentially validate each premise and ideally mimic human analytical processes. A model adept at reasoning is expected to demonstrate proficiency in both data retrieval and the structural understanding of charts, suggesting a synergy between these competencies. However, in our zero-shot study using the sophisticated MATCHA model on a scientific chart question answering dataset, an intriguing pattern emerged. The model showcased superior performance in chart reasoning (27\%) over chart structure (19\%) and data retrieval (14\%). This performance gap suggests that models might more readily generalize reasoning capabilities across datasets, benefiting from consistent mathematical and linguistic semantics, even when challenged by changes in the visual domain that complicate structure comprehension and data retrieval. Furthermore, the efficacy of using accuracy of binary QA for evaluating chart reasoning comes into question if models can deduce correct answers without parsing chart data or structure. VPP highlights the importance of integrating reasoning with visual comprehension to enhance model performance in chart analysis, pushing for a balanced approach in evaluating visual data interpretation capabilities.

View on arXiv
Comments on this paper