ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.00126
39
0

Training and Evaluating Causal Forecasting Models for Time-Series

31 October 2024
Thomas Crasson
Yacine Nabet
Mathias Lécuyer
    CML
    AI4TS
ArXivPDFHTML
Abstract

Deep learning time-series models are often used to make forecasts that inform downstream decisions. Since these decisions can differ from those in the training set, there is an implicit requirement that time-series models will generalize outside of their training distribution. Despite this core requirement, time-series models are typically trained and evaluated on in-distribution predictive tasks. We extend the orthogonal statistical learning framework to train causal time-series models that generalize better when forecasting the effect of actions outside of their training distribution. To evaluate these models, we leverage Regression Discontinuity Designs popular in economics to construct a test set of causal treatment effects.

View on arXiv
Comments on this paper