ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.00390
35
97

MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Preference Calibration

1 November 2024
David Anugraha
Garry Kuwanto
Lucky Susanto
Derry Wijaya
Genta Indra Winata
    OSLM
ArXivPDFHTML
Abstract

We present MetaMetrics-MT, an innovative metric designed to evaluate machine translation (MT) tasks by aligning closely with human preferences through Bayesian optimization with Gaussian Processes. MetaMetrics-MT enhances existing MT metrics by optimizing their correlation with human judgments. Our experiments on the WMT24 metric shared task dataset demonstrate that MetaMetrics-MT outperforms all existing baselines, setting a new benchmark for state-of-the-art performance in the reference-based setting. Furthermore, it achieves comparable results to leading metrics in the reference-free setting, offering greater efficiency.

View on arXiv
Comments on this paper