38
2

Leveraging Large Language Models for Code-Mixed Data Augmentation in Sentiment Analysis

Linda Zeng
Abstract

Code-mixing (CM), where speakers blend languages within a single expression, is prevalent in multilingual societies but poses challenges for natural language processing due to its complexity and limited data. We propose using a large language model to generate synthetic CM data, which is then used to enhance the performance of task-specific models for CM sentiment analysis. Our results show that in Spanish-English, synthetic data improved the F1 score by 9.32%, outperforming previous augmentation techniques. However, in Malayalam-English, synthetic data only helped when the baseline was low; with strong natural data, additional synthetic data offered little benefit. Human evaluation confirmed that this approach is a simple, cost-effective way to generate natural-sounding CM sentences, particularly beneficial for low baselines. Our findings suggest that few-shot prompting of large language models is a promising method for CM data augmentation and has significant impact on improving sentiment analysis, an important element in the development of social influence systems.

View on arXiv
Comments on this paper