ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.02117
14
1

AVSS: Layer Importance Evaluation in Large Language Models via Activation Variance-Sparsity Analysis

4 November 2024
Zichen Song
Yuxin Wu
Sitan Huang
Zhongfeng Kang
ArXivPDFHTML
Abstract

The evaluation of layer importance in deep learning has been an active area of research, with significant implications for model optimization and interpretability. Recently, large language models (LLMs) have gained prominence across various domains, yet limited studies have explored the functional importance and performance contributions of individual layers within LLMs, especially from the perspective of activation distribution. In this work, we propose the Activation Variance-Sparsity Score (AVSS), a novel metric combining normalized activation variance and sparsity to assess each layer's contribution to model performance. By identifying and removing approximately the lowest 25% of layers based on AVSS, we achieve over 90% of original model performance across tasks such as question answering, language modeling, and sentiment classification, indicating that these layers may be non-essential. Our approach provides a systematic method for identifying less critical layers, contributing to efficient large language model architectures.

View on arXiv
Comments on this paper