ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.04224
16
1

WiFlexFormer: Efficient WiFi-Based Person-Centric Sensing

6 November 2024
Julian Strohmayer
Matthias Wödlinger
Martin Kampel
ArXivPDFHTML
Abstract

We propose WiFlexFormer, a highly efficient Transformer-based architecture designed for WiFi Channel State Information (CSI)-based person-centric sensing. We benchmark WiFlexFormer against state-of-the-art vision and specialized architectures for processing radio frequency data and demonstrate that it achieves comparable Human Activity Recognition (HAR) performance while offering a significantly lower parameter count and faster inference times. With an inference time of just 10 ms on an Nvidia Jetson Orin Nano, WiFlexFormer is optimized for real-time inference. Additionally, its low parameter count contributes to improved cross-domain generalization, where it often outperforms larger models. Our comprehensive evaluation shows that WiFlexFormer is a potential solution for efficient, scalable WiFi-based sensing applications. The PyTorch implementation of WiFlexFormer is publicly available at: https://github.com/StrohmayerJ/WiFlexFormer.

View on arXiv
Comments on this paper