ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.04867
36
0

Think Smart, Act SMARL! Analyzing Probabilistic Logic Shields for Multi-Agent Reinforcement Learning

7 November 2024
Satchit Chatterji
Erman Acar
ArXivPDFHTML
Abstract

Safe reinforcement learning (RL) is crucial for real-world applications, and multi-agent interactions introduce additional safety challenges. While Probabilistic Logic Shields (PLS) has been a powerful proposal to enforce safety in single-agent RL, their generalizability to multi-agent settings remains unexplored. In this paper, we address this gap by conducting extensive analyses of PLS within decentralized, multi-agent environments, and in doing so, propose Shielded Multi-Agent Reinforcement Learning (SMARL) as a general framework for steering MARL towards norm-compliant outcomes. Our key contributions are: (1) a novel Probabilistic Logic Temporal Difference (PLTD) update for shielded, independent Q-learning, which incorporates probabilistic constraints directly into the value update process; (2) a probabilistic logic policy gradient method for shielded PPO with formal safety guarantees for MARL; and (3) comprehensive evaluation across symmetric and asymmetrically shielded nnn-player game-theoretic benchmarks, demonstrating fewer constraint violations and significantly better cooperation under normative constraints. These results position SMARL as an effective mechanism for equilibrium selection, paving the way toward safer, socially aligned multi-agent systems.

View on arXiv
@article{chatterji2025_2411.04867,
  title={ Think Smart, Act SMARL! Analyzing Probabilistic Logic Shields for Multi-Agent Reinforcement Learning },
  author={ Satchit Chatterji and Erman Acar },
  journal={arXiv preprint arXiv:2411.04867},
  year={ 2025 }
}
Comments on this paper