ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.05816
26
0

Learning Characteristics of Reverse Quaternion Neural Network

1 November 2024
Shogo Yamauchi
Tohru Nitta
Takaaki Ohnishi
ArXivPDFHTML
Abstract

The purpose of this paper is to propose a new multi-layer feedforward quaternion neural network model architecture, Reverse Quaternion Neural Network which utilizes the non-commutative nature of quaternion products, and to clarify its learning characteristics. While quaternion neural networks have been used in various fields, there has been no research report on the characteristics of multi-layer feedforward quaternion neural networks where weights are applied in the reverse direction. This paper investigates the learning characteristics of the Reverse Quaternion Neural Network from two perspectives: the learning speed and the generalization on rotation. As a result, it is found that the Reverse Quaternion Neural Network has a learning speed comparable to existing models and can obtain a different rotation representation from the existing models.

View on arXiv
Comments on this paper