ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.06137
21
0

A Sharded Blockchain-Based Secure Federated Learning Framework for LEO Satellite Networks

9 November 2024
Wenbo Wu
Cheng Tan
Kangcheng Yang
Zhishu Shen
Qiushi Zheng
Jiong Jin
    FedML
ArXivPDFHTML
Abstract

Low Earth Orbit (LEO) satellite networks are increasingly essential for space-based artificial intelligence (AI) applications. However, as commercial use expands, LEO satellite networks face heightened cyberattack risks, especially through satellite-to-satellite communication links, which are more vulnerable than ground-based connections. As the number of operational satellites continues to grow, addressing these security challenges becomes increasingly critical. Traditional approaches, which focus on sending models to ground stations for validation, often overlook the limited communication windows available to LEO satellites, leaving critical security risks unaddressed. To tackle these challenges, we propose a sharded blockchain-based federated learning framework for LEO networks, called SBFL-LEO. This framework improves the reliability of inter-satellite communications using blockchain technology and assigns specific roles to each satellite. Miner satellites leverage cosine similarity (CS) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to identify malicious models and monitor each other to detect inaccurate aggregated models. Security analysis and experimental results demonstrate that our approach outperforms baseline methods in both model accuracy and energy efficiency, significantly enhancing system robustness against attacks.

View on arXiv
Comments on this paper