ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.06264
29
0

GuidelineGuard: An Agentic Framework for Medical Note Evaluation with Guideline Adherence

9 November 2024
MD Ragib Shahriyear
    AI4TS
    LM&MA
ArXivPDFHTML
Abstract

Although rapid advancements in Large Language Models (LLMs) are facilitating the integration of artificial intelligence-based applications and services in healthcare, limited research has focused on the systematic evaluation of medical notes for guideline adherence. This paper introduces GuidelineGuard, an agentic framework powered by LLMs that autonomously analyzes medical notes, such as hospital discharge and office visit notes, to ensure compliance with established healthcare guidelines. By identifying deviations from recommended practices and providing evidence-based suggestions, GuidelineGuard helps clinicians adhere to the latest standards from organizations like the WHO and CDC. This framework offers a novel approach to improving documentation quality and reducing clinical errors.

View on arXiv
Comments on this paper