ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.06593
28
0

Algebraic and Statistical Properties of the Partially Regularized Ordinary Least Squares Interpolator

10 November 2024
Letian Yang
Dennis Shen
ArXivPDFHTML
Abstract

Modern deep learning has revealed a surprising statistical phenomenon known as benign overfitting, with high-dimensional linear regression being a prominent example. This paper contributes to ongoing research on the ordinary least squares (OLS) interpolator, focusing on the partial regression setting, where only a subset of coefficients is implicitly regularized. On the algebraic front, we extend Cochran's formula and the leave-one-out residual formula for the partial regularization framework. On the stochastic front, we leverage our algebraic results to design several homoskedastic variance estimators under the Gauss-Markov model. These estimators serve as a basis for conducting statistical inference, albeit with slight conservatism in their performance. Through simulations, we study the finite-sample properties of these variance estimators across various generative models.

View on arXiv
Comments on this paper