26
0

SAG-ViT: A Scale-Aware, High-Fidelity Patching Approach with Graph Attention for Vision Transformers

Abstract

Vision Transformers (ViTs) have redefined image classification by leveraging self-attention to capture complex patterns and long-range dependencies between image patches. However, a key challenge for ViTs is efficiently incorporating multi-scale feature representations, which is inherent in convolutional neural networks (CNNs) through their hierarchical structure. Graph transformers have made strides in addressing this by leveraging graph-based modeling, but they often lose or insufficiently represent spatial hierarchies, especially since redundant or less relevant areas dilute the image's contextual representation. To bridge this gap, we propose SAG-ViT, a Scale-Aware Graph Attention ViT that integrates multi-scale feature capabilities of CNNs, representational power of ViTs, graph-attended patching to enable richer contextual representation. Using EfficientNetV2 as a backbone, the model extracts multi-scale feature maps, dividing them into patches to preserve richer semantic information compared to directly patching the input images. The patches are structured into a graph using spatial and feature similarities, where a Graph Attention Network (GAT) refines the node embeddings. This refined graph representation is then processed by a Transformer encoder, capturing long-range dependencies and complex interactions. We evaluate SAG-ViT on benchmark datasets across various domains, validating its effectiveness in advancing image classification tasks. Our code and weights are available atthis https URL.

View on arXiv
Comments on this paper