ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.10193
32
2

DiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization

15 November 2024
C. Koutlis
Symeon Papadopoulos
ArXivPDFHTML
Abstract

Deepfake technology has rapidly advanced and poses significant threats to information integrity and trust in online multimedia. While significant progress has been made in detecting deepfakes, the simultaneous manipulation of audio and visual modalities, sometimes at small parts or in subtle ways, presents highly challenging detection scenarios. To address these challenges, we present DiMoDif, an audio-visual deepfake detection framework that leverages the inter-modality differences in machine perception of speech, based on the assumption that in real samples -- in contrast to deepfakes -- visual and audio signals coincide in terms of information. DiMoDif leverages features from deep networks that specialize in visual and audio speech recognition to spot frame-level cross-modal incongruities, and in that way to temporally localize the deepfake forgery. To this end, we devise a hierarchical cross-modal fusion network, integrating adaptive temporal alignment modules and a learned discrepancy mapping layer to explicitly model the subtle differences between visual and audio representations. Then, the detection model is optimized through a composite loss function accounting for frame-level detections and fake intervals localization. DiMoDif outperforms the state-of-the-art on the Deepfake Detection task by 30.5 AUC on the highly challenging AV-Deepfake1M, while it performs exceptionally on FakeAVCeleb and LAV-DF. On the Temporal Forgery Localization task, it outperforms the state-of-the-art by 47.88 AP@0.75 on AV-Deepfake1M, and performs on-par on LAV-DF. Code available atthis https URL.

View on arXiv
@article{koutlis2025_2411.10193,
  title={ DiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization },
  author={ Christos Koutlis and Symeon Papadopoulos },
  journal={arXiv preprint arXiv:2411.10193},
  year={ 2025 }
}
Comments on this paper