ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.10813
25
0

Information Anxiety in Large Language Models

16 November 2024
Prasoon Bajpai
Sarah Masud
Tanmoy Chakraborty
ArXivPDFHTML
Abstract

Large Language Models (LLMs) have demonstrated strong performance as knowledge repositories, enabling models to understand user queries and generate accurate and context-aware responses. Extensive evaluation setups have corroborated the positive correlation between the retrieval capability of LLMs and the frequency of entities in their pretraining corpus. We take the investigation further by conducting a comprehensive analysis of the internal reasoning and retrieval mechanisms of LLMs. Our work focuses on three critical dimensions - the impact of entity popularity, the models' sensitivity to lexical variations in query formulation, and the progression of hidden state representations across LLM layers. Our preliminary findings reveal that popular questions facilitate early convergence of internal states toward the correct answer. However, as the popularity of a query increases, retrieved attributes across lexical variations become increasingly dissimilar and less accurate. Interestingly, we find that LLMs struggle to disentangle facts, grounded in distinct relations, from their parametric memory when dealing with highly popular subjects. Through a case study, we explore these latent strains within LLMs when processing highly popular queries, a phenomenon we term information anxiety. The emergence of information anxiety in LLMs underscores the adversarial injection in the form of linguistic variations and calls for a more holistic evaluation of frequently occurring entities.

View on arXiv
Comments on this paper