ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.11465
58
0

Re-examining learning linear functions in context

18 November 2024
Omar Naim
Guilhem Fouilhé
Nicholas Asher
ArXivPDFHTML
Abstract

In-context learning (ICL) has emerged as a powerful paradigm for easily adapting Large Language Models (LLMs) to various tasks. However, our understanding of how ICL works remains limited. We explore a simple model of ICL in a controlled setup with synthetic training data to investigate ICL of univariate linear functions. We experiment with a range of GPT-2-like transformer models trained from scratch. Our findings challenge the prevailing narrative that transformers adopt algorithmic approaches like linear regression to learn a linear function in-context. These models fail to generalize beyond their training distribution, highlighting fundamental limitations in their capacity to infer abstract task structures. Our experiments lead us to propose a mathematically precise hypothesis of what the model might be learning.

View on arXiv
Comments on this paper