ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.11768
68
0
v1v2 (latest)

AdaptLIL: A Gaze-Adaptive Visualization for Ontology Mapping

18 November 2024
Nicholas Chow
Bo Fu
ArXiv (abs)PDFHTML
Abstract

This paper showcases AdaptLIL, a real-time adaptive link-indented list ontology mapping visualization that uses eye gaze as the primary input source. Through a multimodal combination of real-time systems, deep learning, and web development applications, this system uniquely curtails graphical overlays (adaptations) to pairwise mappings of link-indented list ontology visualizations for individual users based solely on their eye gaze.

View on arXiv
Comments on this paper