ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.15194
68
0

Guiding Word Equation Solving using Graph Neural Networks (Extended Technical Report)

19 November 2024
Parosh Aziz Abdulla
Mohamed Faouzi Atig
Julie Cailler
Chencheng Liang
P. Rümmer
ArXivPDFHTML
Abstract

This paper proposes a Graph Neural Network-guided algorithm for solving word equations, based on the well-known Nielsen transformation for splitting equations. The algorithm iteratively rewrites the first terms of each side of an equation, giving rise to a tree-like search space. The choice of path at each split point of the tree significantly impacts solving time, motivating the use of Graph Neural Networks (GNNs) for efficient split decision-making. Split decisions are encoded as multi-classification tasks, and five graph representations of word equations are introduced to encode their structural information for GNNs. The algorithm is implemented as a solver named DragonLi. Experiments are conducted on artificial and real-world benchmarks. The algorithm performs particularly well on satisfiable problems. For single word \mbox{equations}, DragonLi can solve significantly more problems than well-established string solvers. For the conjunction of multiple word equations, DragonLi is competitive with state-of-the-art string solvers.

View on arXiv
Comments on this paper