Panoramic Image Generation (PIG) aims to create coherent images of arbitrary lengths. Most existing methods fall in the joint diffusion paradigm, but their complex and heuristic crop connection designs often limit their ability to achieve multilevel coherence. By deconstructing this challenge into its core components, we find it naturally aligns with next-token prediction, leading us to adopt an autoregressive (AR) paradigm for PIG modeling. However, existing visual AR (VAR) models are limited to fixed-size generation, lacking the capability to produce panoramic images. In this paper, we propose PanoLlama, a novel framework that achieves endless and coherent panorama generation with the autoregressive paradigm. Our approach develops a training-free strategy that utilizes token redirection to overcome the size limitations of existing VAR models, enabling next-crop prediction in both horizontal and vertical directions. This refreshes the PIG pipeline while achieving SOTA performance in coherence (47.50\%), fidelity(28.16\%), and aesthetics (15\%). Additionally, PanoLlama supports applications other PIG methods cannot achieve, including mask-free layout control, multi-scale and multi-guidance synthesis. To facilitate standardized evaluation, we also establish a dataset with 1,000 prompts spanning 100+ themes, providing a new testing benchmark for PIG research.
View on arXiv@article{zhou2025_2411.15867, title={ PanoLlama: Generating Endless and Coherent Panoramas with Next-Token-Prediction LLMs }, author={ Teng Zhou and Xiaoyu Zhang and Yongchuan Tang }, journal={arXiv preprint arXiv:2411.15867}, year={ 2025 } }