ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.15967
63
0

CNNs for Style Transfer of Digital to Film Photography

24 November 2024
Pierre Mackenzie
Mika Senghaas
Raphael Achddou
    GAN
ArXivPDFHTML
Abstract

The use of deep learning in stylistic effect generation has seen increasing use over recent years. In this work, we use simple convolutional neural networks to model Cinestill800T film given a digital input. We test the effect of different loss functions, the addition of an input noise channel and the use of random scales of patches during training. We find that a combination of MSE/VGG loss gives the best colour production and that some grain can be produced, but it is not of a high quality, and no halation is produced. We contribute our dataset of aligned paired images taken with a film and digital camera for further work.

View on arXiv
Comments on this paper