ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.16049
76
2

ROADS: Robust Prompt-driven Multi-Class Anomaly Detection under Domain Shift

25 November 2024
Hossein Kashiani
Niloufar Alipour Talemi
Fatemeh Afghah
ArXivPDFHTML
Abstract

Recent advancements in anomaly detection have shifted focus towards Multi-class Unified Anomaly Detection (MUAD), offering more scalable and practical alternatives compared to traditional one-class-one-model approaches. However, existing MUAD methods often suffer from inter-class interference and are highly susceptible to domain shifts, leading to substantial performance degradation in real-world applications. In this paper, we propose a novel robust prompt-driven MUAD framework, called ROADS, to address these challenges. ROADS employs a hierarchical class-aware prompt integration mechanism that dynamically encodes class-specific information into our anomaly detector to mitigate interference among anomaly classes. Additionally, ROADS incorporates a domain adapter to enhance robustness against domain shifts by learning domain-invariant representations. Extensive experiments on MVTec-AD and VISA datasets demonstrate that ROADS surpasses state-of-the-art methods in both anomaly detection and localization, with notable improvements in out-of-distribution settings.

View on arXiv
Comments on this paper