ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.16403
71
0

Adapter-based Approaches to Knowledge-enhanced Language Models -- A Survey

25 November 2024
Alexander Fichtl
Juraj Vladika
Georg Groh
    KELM
ArXivPDFHTML
Abstract

Knowledge-enhanced language models (KELMs) have emerged as promising tools to bridge the gap between large-scale language models and domain-specific knowledge. KELMs can achieve higher factual accuracy and mitigate hallucinations by leveraging knowledge graphs (KGs). They are frequently combined with adapter modules to reduce the computational load and risk of catastrophic forgetting. In this paper, we conduct a systematic literature review (SLR) on adapter-based approaches to KELMs. We provide a structured overview of existing methodologies in the field through quantitative and qualitative analysis and explore the strengths and potential shortcomings of individual approaches. We show that general knowledge and domain-specific approaches have been frequently explored along with various adapter architectures and downstream tasks. We particularly focused on the popular biomedical domain, where we provided an insightful performance comparison of existing KELMs. We outline the main trends and propose promising future directions.

View on arXiv
Comments on this paper