ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.16440
69
1

AnonyNoise: Anonymizing Event Data with Smart Noise to Outsmart Re-Identification and Preserve Privacy

25 November 2024
Katharina Bendig
René Schuster
Nicole Thiemer
Karen Joisten
Didier Stricker
    PICV
ArXivPDFHTML
Abstract

The increasing capabilities of deep neural networks for re-identification, combined with the rise in public surveillance in recent years, pose a substantial threat to individual privacy. Event cameras were initially considered as a promising solution since their output is sparse and therefore difficult for humans to interpret. However, recent advances in deep learning proof that neural networks are able to reconstruct high-quality grayscale images and re-identify individuals using data from event cameras. In our paper, we contribute a crucial ethical discussion on data privacy and present the first event anonymization pipeline to prevent re-identification not only by humans but also by neural networks. Our method effectively introduces learnable data-dependent noise to cover personally identifiable information in raw event data, reducing attackers' re-identification capabilities by up to 60%, while maintaining substantial information for the performing of downstream tasks. Moreover, our anonymization generalizes well on unseen data and is robust against image reconstruction and inversion attacks. Code: https://github.com/dfki-av/AnonyNoise

View on arXiv
Comments on this paper