ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.16742
59
2

Text-to-SQL Calibration: No Need to Ask -- Just Rescale Model Probabilities

23 November 2024
Ashwin Ramachandran
Sunita Sarawagi
ArXivPDFHTML
Abstract

Calibration is crucial as large language models (LLMs) are increasingly deployed to convert natural language queries into SQL for commercial databases. In this work, we investigate calibration techniques for assigning confidence to generated SQL queries. We show that a straightforward baseline -- deriving confidence from the model's full-sequence probability -- outperforms recent methods that rely on follow-up prompts for self-checking and confidence verbalization. Our comprehensive evaluation, conducted across two widely-used Text-to-SQL benchmarks and multiple LLM architectures, provides valuable insights into the effectiveness of various calibration strategies.

View on arXiv
Comments on this paper