ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.16815
59
0

FREE-Merging: Fourier Transform for Efficient Model Merging

25 November 2024
Shenghe Zheng
Hongzhi Wang
    MoMe
ArXivPDFHTML
Abstract

With the rapid growth of deep learning, there is an increasing availability of open-source models for various tasks. However, single fine-tuned models often fall short of meeting the diverse needs of users. Model merging has thus emerged as an efficient method to integrate the capabilities of existing models into a unified model. Nevertheless, existing model merging methods face challenging trade-offs between performance and deployment costs, primarily due to task interference. For the first time, we reveal that task interference is evident in the frequency domain of model parameters, yet current efforts only focus on spatial domain solutions, which are largely ineffective in addressing frequency domain interference. To mitigate the impact of frequency domain interference, we propose FR-Merging, an innovative method that effectively filters harmful frequency domain interference on the backbone with minimal computational overhead. Since performance loss is inevitable with cost-free methods, we propose a lightweight task-specific expert module that dynamically compensates for information loss during merging. This proposed framework, FREE-Merging (FR-Merging with experts), strikes a balanced trade-off between training cost, inference latency, storage requirements, and performance. We demonstrate the effectiveness of both FR-Merging and FREE-Merging on multiple tasks across CV, NLP, and Multi-Modal domains and show that they can be flexibly adapted to specific needs.

View on arXiv
@article{zheng2025_2411.16815,
  title={ FREE-Merging: Fourier Transform for Efficient Model Merging },
  author={ Shenghe Zheng and Hongzhi Wang },
  journal={arXiv preprint arXiv:2411.16815},
  year={ 2025 }
}
Comments on this paper