ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.16972
59
1

Clustering Time Series Data with Gaussian Mixture Embeddings in a Graph Autoencoder Framework

25 November 2024
Amirabbas Afzali
Hesam Hosseini
Mohmmadamin Mirzai
Arash Amini
    AI4TS
ArXivPDFHTML
Abstract

Time series data analysis is prevalent across various domains, including finance, healthcare, and environmental monitoring. Traditional time series clustering methods often struggle to capture the complex temporal dependencies inherent in such data. In this paper, we propose the Variational Mixture Graph Autoencoder (VMGAE), a graph-based approach for time series clustering that leverages the structural advantages of graphs to capture enriched data relationships and produces Gaussian mixture embeddings for improved separability. Comparisons with baseline methods are included with experimental results, demonstrating that our method significantly outperforms state-of-the-art time-series clustering techniques. We further validate our method on real-world financial data, highlighting its practical applications in finance. By uncovering community structures in stock markets, our method provides deeper insights into stock relationships, benefiting market prediction, portfolio optimization, and risk management.

View on arXiv
Comments on this paper